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& In the two years passed since the ICAME’99 conference the work on
MossWinn 3.0 has been completed. In this new version of the MossWinn 
program a wide range of new procedures has been invented and implemented.
Here we present some of the scientifically interesting aspects of the work 
culminated in MossWinn 3.0 , the main topics being:

F We introduce the new distribution engine of MossWinn 3.0 
that provides the user with unprecedented flexibility when fitting 
distributions.

F We reveal why some existing Hamiltonian routines fail to 
calculate correctly the Mössbauer spectrum for a certain set of 
physical parameters in the presence of mixed magnetic and 
electric quadrupole interactions, and show how the corresponding
problem can be fixed.

FWe display a range of the most interesting new features
introduced in MossWinn 3.0 .
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The new distribution engine of 
MossWinn 3.0

When the new FIT menu system of MossWinn 3.0 was envisaged 
around 3 years ago, it was decided that the fitting of distributions 
should became a seamlessly integrated part of it. Furthermore, the 
new distribution engine was to meet the requirement to be free 
from all the serious and annoying restrictions often encountered in 
other routines. Now, the work has been done, and the result we 
consider to be a breakthrough in the field of Mössbauer spectrum
analysis because of the unprecedented ease and flexibility the new 
routine has to offer. Actually, the fitting of distributions became so 
straightforward in version 3.0 that in the manual of MossWinn, 
consisting of more than one hundred pages, only 1 single page was 
enough to explain it…



Capabilities of the new integrated 
distribution routine

1, Able to fit distributions using the exact solution of Nuclear Hamiltonians as the 
elementary pattern.

2, Able to fit distributions for arbitrary M1, E1, E2, M1+E2 Mössbauer transition with 
Ie, Ig ≤ 9/2. Particularly, distributions can be fitted easily for 57Fe, 119Sn, 125Te, 151Eu, 121Sb, 
141Pr, 129I, 237Np, 197Au, and 161Dy (25.655 keV).

3, Distributions can be fitted in any of the position type parameters, e.g. Magnetic field, 
Quadrupole splitting, Vzz, η, hyperfine field angles, relaxation rate etc. Arbitrary correlation 
function can be defined between parameters.

4, Able to fit multiple distributions of different kind to the same spectrum. For each 
spectrum up to 5 different distribution blocks can be defined.

5, “Crystalline subspectra” and distribution blocks can be combined arbitrarily.

6, Distributions with shared parameters, even together with crystalline subspectra, can be 
fitted simultaneously to up to 32 spectra.

7, Constrains can be defined for the relative area fraction (expressed as % of the total 
spectrum area) of distributions. ��



How to fit distributions using the exact solution of Nuclear 
Hamiltonians as the elementary pattern ?

This feature of the new distribution engine of MossWinn 3.0 attracted considerable  interest. Therefore, next we explain 
how it is done in MossWinn along with the fit of multiple distributions of different kind. We start with the formulas taken 
from the original paper of J. Hesse and A. Rübartsch [J. Hesse, A. Rübartsch: J. Phys. E 7 (1974) 526.]:

where vi is the velocity, L6(Hj,vi) is the value of the sextet with magnetic field Hj at the velocity vi, P(Hj) is the relative weight 
of the sextet L6(Hj,vi) contributing to S(vi), the measured spectrum to be fitted by the distribution. By selecting m different 
Hj values one can tabulate L6(Hj,vi), and the right side of the above equation can be written as a matrix-vector 
multiplication:

Si=S(vi), N being the number of channels in the measured Mössbauer spectrum, and Lij being equal to L6(Hj,vi). Although 
the unknown Pj could be observed as Lij

-1Si , the distribution observed in this way would display unrealistic fluctuations 
caused by statistical errors. To regulate the smoothness of the observed distribution curve, J. Hesse and A. Rübartsch
apply a D(m x m) smoothing matrix, that acts as a penalty function for distributions for which the sum of discrete second 
differences would be too high. It turns out that the sum of squared deviation between the measured spectrum Sj , and the 
model spectrum based on the Pj distribution curve will be minimum if Pj is calculated in the following way:

Where γ is the smoothing parameter. By examining the equations above, one can easily realize that there has never been 
made use of the fact that in the (N x m) matrix Lij the values of a simple multiplet (sextet) are tabulated. In other words, in 
the method of Hesse and Rübartsch nothing is assumed about the elementary pattern of the distribution. One can 
choose this elementary pattern arbitrarily. Thus, we can also choose it to be the exact solution of a Nuclear Hamiltonian in 
the presence of mixed magnetic and electric quadrupole interactions… ��
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As an example next we assume that the measured spectrum can be fitted with two distributions: a quadrupole splitting 
distribution of a doublet and a magnetic field distribution calculated by using the exact solution of the nuclear Hamiltonian 
as the elementary pattern. We will need to calculate the matrix L for both distributions separately:

Then the two matrices have to be combined into one in the following way:
The smoothing matrix is built from the individual smoothing matrices of
the two distributions in the following way (each distribution block can have
its own independent γ smoothing parameter): 

By using the very same equation as in the case of a single distribution,
we derive the two distributions in a single step:

The two separate distributions can be extracted from the resulted weight vector, Pi, as shown below:
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This vector describes the quadrupole splitting 
distribution of the doublet.

This vector describes the magnetic field 
distribution of the Hamiltonian pattern.



Why some existing Hamiltonian routines fail
to calculate correctly the Mössbauer spectrum for a certain set of physical parameters.

For today’s powerful numerical algorithms the diagonalization of the Hamiltonian matrices 
encountered in the practice of Mössbauer spectroscopy is an easy job. Still, one has to be very 
careful when implementing these algorithms to serve the needs of Mössbauer spectroscopy: 
sometimes the textbooks do not take enough care to reveal all the features of the algorithms 
in a detailed manner. As a result, an unsatisfactorily safeguarded method can produce 
erroneous results in practice. In the followings we reveal why some existing Hamiltonian 
routines indeed fail to calculate correctly the Mössbauer spectrum for a certain set of physical 
parameters in the presence of mixed magnetic and electric quadrupole interactions, and show 
how the corresponding problem can be fixed.

The nuclear static Hamiltonian expressed in the eigensystem of the EFG is written as:
(W. Kündig: Nuclear Instruments and Methods 48 (1967) 219.)
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For the case of 57Fe, for example, the 
H(I) matrix of the excited (I=3/2) level 
is a 4x4 complex Hermitian matrix.
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To calculate the energy shift of the degenerate energy levels of the Ie=3/2 excited 
nuclear level, induced by the hyperfine interactions, one has to solve the
eigenproblem of H(I=3/2) by deriving its eigenvalues and the corresponding 
eigenvectors. The problem of solving the eigenproblem of the H complex Hermitian
matrix can be reduced to the solution of the eigenproblem of the following real 
symmetrical matrix (W.H.Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes, The Art of 

Scientific Computing, Cambridge University Press, Cambridge, New York (1990) pp. 404):
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Where HA=Re(H) and HB=Im(H). 

As HR has twice the dimension of H, the number of
eigenvalues and eigenvectors obtained for it is twice 
the number of eigenvalues and eigenvectors obtained 
for the matrix H.  

One can show that if the complex vector (u+i v) is the eigenvector of the H complex 
matrix, then the augmented matrix HR has the following two vectors among its 
eigenvectors, both belonging to the same real eigenvalue:








−
=








= +

u

v
qand

v

u
q 11

By solving the eigenproblem of the H complex matrix 
via the augmented problem of HR, only one of these two 
eigenvectors (e.g. q1) has to be taken into account.
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Thus, by solving the augmented eigenproblem for the case of 
57Fe we obtain 8 eigenvectors from which only 4 are 
independent. Thus, one has the job to select the 4 
independent eigenvectors from the 4 x 2 pairs of 
eigenvectors of HR. And this is the stage where some 
existing routines fail: from the 8 eigenvectors they fail to 
select 4 independent, but they select 4 among which one 
or two redundant pairs (e.g. q1 and q1

+) will be present. As 
a result of such an error the routine will calculate the 
Mössbauer spectrum of 57Fe as if the excited I=3/2 level 
had a sublevel (e.g. m=-3/2) twice and an another sublevel 
(e.g. m=-1/2) missing. Thus, in the resulting theoretical 
Mössbauer spectrum the Mössbauer absorption lines 
belonging to the missing sublevel will be absent, and the 
absorption lines belonging to the doubly represented 
sublevel will have their amplitude doubled.



We speculate that the reason why this selection procedure is not carried out correctly by 
some routines is that in many of the cases the q eigenvectors of HR will follow each other in a 
specific order. Thus, authors could easily have the impression that they will always be in that 
specific order. However, as the statistics presented in the followings shows, they won’t.

As an example, we investigated the behaviour of the QL diagonalization method described in 
W.H.Press et al.: Numerical Recipes, Cambridge University Press, Cambridge, New York 
(1990). We wanted to know in which order the method will produce the eigenvectors of HR for 
the case of a mixed electric quadrupole + magnetic dipole hyperfine interaction. As the table 
shows, the order of eigenvectors depends strongly on the values of the polar and azimuthal 
angles.

28.9 %26.7 %44.4 %Azimuthal angle = 90 [deg]

0.0 %0.0 %100 %Azimuthal angle = 0

55.1 %44.9 %< 0.01 %H ⊥ Vzz , others random

0.0 %0.0 %100 %H | | Vzz , others random

67.8 %32.2 %< 0.01 %η = 0, others random

67.9 %32.1 %< 0.01 %None (all random)

Order TYPE C occurs

(All other order types)

Order TYPE B occurs

(q1,q1
+,q2,q2

+,q3,q3
+,q4,q4

+)

Order TYPE A occurs

(q1,q2,q3,q4,q1
+,q2

+,q3
+,q4

+)
Restrictions

If not constrained, the values of H, Vzz, η, and the polar and azimuthal angles of H in the system of EFG 
were selected randomly from the intervals [0..60] Tesla, [0..20] 1021 V/m2, [0..1], [0..90] and [0..90], 
respectively. Each row represents the results of 105 runs. ��
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How to check your own routine
The obtained table of statistics suggests a way 
through which you can check whether the 
Hamiltonian routine you use is faulty or not. First 
select a fixed set of Mössbauer parameters 
expressed in the eigensystem of the EFG:

H = 29.37957 Tesla (g3/2* µN *H = 2.0 mm/s)

Vzz = 12.0*1021 V/m2 (e*Q3/2*Vzz = 4.0 mm/s)

η = 0.5

Polar angle of H in the PAS system: 0 [deg]

Azimuthal angle of H in the PAS system: 75 [deg]

Then create model spectra with your routine by 
increasing the polar angle with a step of 5 [deg] 
from Polar angle = 0 [deg] to Polar angle = 90 
[deg]. If the selection of eigenvectors is not done 
entirely correctly, then at some intermediate value 
of the polar angle the routine will produce 
theoretical Mössbauer spectra with missing 
absorption lines. An example is shown on the right 
for an existing routine that failed at 
Polar angle = 25 [deg].
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Solution on the programmer’s level
The main difficulty in the implementation of a routine that has the job to select the independent 

eigenvectors of HR is that the diagonalization routine calculates eigenvectors with a finite level of precision. 
Therefore, the pairs of eigenvectors representing the same solution (e.g. q1 and q1

+) do not match exactly. 
However, we can define a quantity that gives a measure of relatedness when comparing two eigenvectors 
of HR (q1 and q2):

α(q1,q2)= MINIMUM OF { abs(v1+u2)/(abs(v1)+abs(u2) ) + abs(u1-v2)/(abs(u1) +abs(v2)) ,
abs(v1-u2)/(abs(v1)+abs(u2) ) + abs(u1+v2)/(abs(u1) +abs(v2)) }

If q2=q1
+ then α(q1,q2)=0 (or in practice <<1.0). When selecting the 4 independent eigenvectors from 

q1..q8 we proceed as follows:

Put q1 in the set of selected eigenvectors: ΕΕ.
βmax:=−1.0;
For values of j going from 2 to 4 do the followings:
{

For values of i going from 2 to 8 do the followings:
{        if qi is already in ΕΕ then start next cycle of i;  

β(qi):=MINIMUM OF α(qi,ΕΕ)
if (βmax< β(qi) or βmax<0.0) then βmax:= β(qi)

}
The vector qi, for which β(qi)= βmax , is the next independent eigenvector.
Put qi into ΕΕ.

}









=








=

2

2
2

1

1
1 v

u
qand

v

u
q



����

Further features of MossWinn 3.0

c Supported Mössbauer transitions: 
Any M1, E1, E2, M1+E2 with Iground, Iexcited ≤≤ 9/2

cc Particularly supported Mössbauer 
isotopes: 57Fe, 119Sn, 125Te, 151Eu, 121Sb, 141Pr, 
129I, 237Np, 197Au, 161Dy (25.655 keV)
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Built in Mössbauer models
1, Mixed Magnetic dipole + Electric quadrupole interaction for all handled 
Mössbauer transitions, for the following geometries (Each model can be fitted either in the 

EFG based or in the H based Principal Axis System):

a, Single Crystal
b, Mosaic
c, Powder
d, Powder with Goldanskii-Karyagin Effect

2, Blume-Tjon two state magnetic relaxation for 57Fe, for powder geometry.

3, Usual linear models for 3/2→1/2 transitions (doublet, sextet, first order 
approximation etc.).

4, Built in support for arbitrary user programmed models, with example files 
provided.

5, For arbitrary M1, E1, E2, M1+E2 transitions the nuclear parameters (g factor, 
quadrupole moment, amplitude and phase of the E2/M1 ratio) can be fitted as well.



c Supported absorption line shapes
1, Lorentzian
2, Lorentzian with dispersion (accounting for the interference between nuclear and 
atomic absorption)
3, Lorentzian with cosine smearing (accounting for geometrical effects)
4, Pseudo-Voigt

c Transmission Integral
For all models, with the exception of distributions, for arbitrary (not only 2n) channel 
number, for sinusoid as well as for linear velocity axis, for unfolded as well as for 
folded spectra, with the correct indication of subcomponents.

c Simultaneous fitting of spectra
For all models – including transmission integral, distributions, and user programmed 
models. Up to 32 Mössbauer spectra can be fitted simultaneously. Shared and 
unshared subspectra can be combined arbitrarily.

����



c ScanFit
The new ScanFit feature of MossWinn enables the 

creation of ASCII data - ready for FIT – from bitmap 
images of scanned Mössbauer spectra.

c Data export

Publication ready graphs - of spectra (including subspectra), of 
distributions, and of parameter correlations – can be printed or copied 
into the clipboard of MS Windows. Multiple spectra can be 
printed/copied on one page. Besides usual fit reports, Mössbauer 
parameters can as well be exported as tables being in order with
respect to the value of one of the parameters.

����
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Further Information

A limited number of copies of the full version of 
MossWinn 3.0 are available for a 30 days trial period. 
If you are interested, please,  contact the author via:

author@mosswinn.com

For further information on the MossWinn program 
concerning availability and price, please, visit:

http://www.mosswinn.com


